当前位置: 首页 > 工作计划 >

高二数学教学计划5篇【完整版】

作者: | 发布时间:2023-11-25 13:00:11 | 浏览次数:

高二数学教学计划一、教材分析。1、教材地位、作用。本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。它安排在下面是小编为大家整理的高二数学教学计划5篇,供大家参考。

高二数学教学计划5篇

高二数学教学计划篇1

一、教材分析。

1、教材地位、作用。

本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。

2、学情分析。

学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。

二、教学目标。

1、知识与技能目标。

(1)理解等可能事件的概念及概率计算公式。

(2)能够准确计算等可能事件的概率。

2、过程与方法。

根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。

3、情感态度与价值观。

概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。

三、重点、难点。

1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

2、难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

四、教学过程。

1、创设情境,提出问题。

师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?

通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。

2、抽象思维。形成概念、

师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?

生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。

师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?

生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。

师:那基本事件有什么特点呢?

问题:

(1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?

(2)事件“出现偶数点”包含了哪几个基本事件?

由如上问题,分别得到基本事件如下的两个特点:

(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

(让学生交流讨论,教师再加以总结、概括)

让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力

例1:从字母中任意取出两个不同字母的试验中,有哪些基本事件?

师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。

解:所求的基本事件共有6个:

____________________________________________________________________________________。

由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。

师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)

试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;

试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;

例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;

经概括总结后得到:

①试验中所有可能出现的基本事件只有有限个;

②每个基本事件出现的可能性相等。

我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。

3、概念深化,加深理解。

试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?

生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。

试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?

生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。

这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。

4、观察比较,推导公式。

师:在古典概型下,随机事件出现的概率如何计算?(让学生讨论、思考交流)

生:试验二中,出现各个点的概率相等,即

P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)

由概率的加法公式,得

P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1

因此P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=

进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,

P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=++==

P(“出现偶数点”)=?=

师:根据上述试验,你能概括总结出,古典概型计算任何事件的概率计算公式吗?

生:_________________________________________________________________。

学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。

师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:

①要判断该概率模型是不是古典概型;

②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

5、应用与提高。

例2:单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考查的内容,他可以选择惟一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,从而由古典概型的概率计算公式得:

探究:在标准化考试中既有单选题又有不定项选择题,不定项选择题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?

解:这是一个古典概型,因为试验的可能结果只有15个:选择A、选择B、选择C、选择D,选择AB、选择AC、选择AD、选择BC、选择BD、选择CD、选择ABC、选择ABD、选择ACD、选择BCD、选择ABCD,从而由古典概型的概率计算公式得:

P(“答对”)=1/15

解决了课前提出的思考题,让学生明确解决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

例3:同时掷两个骰子,计算:

(1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种?

(3)向上的点数之和是5的概率是多少?

(教师先让学生独立完成,再抽两位不同答案的学生回答)

学生1:

①所有可能的结果是:

(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种。

②向上的点数之和为5的结果有2个,它们是(1,4)(2,3)。

③向上点数之和为5的结果(记为事件A)有2种,因此,由古典概型的概率计算公式可得

学生2:

①掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,我们可以用列表法得到(如图),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。

由表中可知同时掷两个骰子的结果共有36种。

②在上面的所有结果中,向上的点数之和为5的结果有4种:(1,4),(2,3),(3,2),(4,1)。

③由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得

师:上面同一个问题为什么会有两种不同的答案呢?(先让学生交流讨论,教师再抽学生回答)

生:答案1是错的,原因是其中构造的21个基本事件不是等可能发生的,因此就不能用古典概型的概率公式求解。

师:我们今后用古典概型的概率公式求解时,特别要验证“每个基本事件出现是等可能的”这个条件,否则计算出的概率将是错误的。

本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。

6、知识梳理,课堂小结。

(1)本节课你学习到了哪些知识?

(2)本节课渗透了哪些数学思想方法?

7、作业布置。

(1)阅读本节教材内容

(2)必做题课本130页练习第1,2题,课本134页习题3。2A组第4题

(3)选做题课本134页习题B组第1题

8、教学反思。

本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。

本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。

高二数学教学计划篇2

一、指导思想:

以发展教育的理念为指引,以学校教务处、教研组、年级组工作计划为指南,加强备课组教师的教育教学理论学习,更新教学观念,落实教学常规,全面提高学生的数学能力,尤其是提高创新意识和实践能力,为社会培养创造型人才

二、学情分析及相关措施:

教学中要从学生的认识水平和实际能力出发,及时纠正不合理学习方法,研究学生的心理特征,做好高二第一学期与第二学期的衔接工作。注重培养学生良好的数学思维方法,良好的学习态度和学习习惯。具体措施如下:

(1)注意研究学生,做好高二第一学期与第二学期的衔接工作。

(2)集中精力打好基础,分项突破难点。所列基础知识依据新课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,讲难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进。

(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

(5)抓好尖子生与后进生的辅导工作。

(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

三、教学进度:

第1周 开学报名

第2周 选修2-2 1.1变化率与导数

第3周 1.2导数的计算 1.3导数在研究函数中的应用

第4周 1.4生活中的优化问题举例 1.5定积分的概念

第5周 1.6微积分基本定理 1.7定积分的简单应用

第6周 第一章复习2.1合情推理与演绎逻辑

第7周 2.2直接证明与间接证明 2.3数学归纳法

第8周 第二章复习 3.1数系的扩充和复数的概念

第9周 3.2复数代数形式的四则运算 第三章复习

第10周 期中复习

第11周 期中考试

第12周 选修2-3 1.1分类加法计数原理与分步乘法计数原理 1.2排列与组合

第13周 1.3二项式定理 第一章复习

第14周 2.1离散型随机变量及其分布列 2.2二项分布及其应用

第15周 2.3离散型随机变量的均值与方差 2.4正态分布

第16周 第二章复习

第17周 3.1回归分析的基本思想及其初步应用

第18周 3.2 独立性检验的基本思想及其初步应用

第19周 第三章复习

第20周 期末总复习

第21周 期末考试

高二数学教学计划篇3

一、 指导思想:

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2、提高空间想像、抽象概括、推理论证、运算求解。

3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

二、教学目标:

(一)情意目标 :

(1)通过分析问题的方法的教学,培养学生的学习兴趣。

(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

(3)在探究中体验获得数学规律的艰辛和乐趣,在分组研究合作的学习中学会交流、相互评价,提高学生的合作意识 。

(二)能力要求 :

(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(2)通过揭示所学内容中的有关概念、公式和图形的对应关系,培养记忆能力。

(3)通过教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

三、教学内容

本学期教学内容有立体几何、解析几何、逻辑知识和圆锥曲线、二元一次不等式(组)与简单的线性规划。

立体几何是研究的是物体的形状、大小与位置关系。通过直观感知、操作确认、思辨论证、等方法认识和探索几何图形及其性质。通过学习,培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力。

直线和圆是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,并了解空间直角坐标系,体会数形结合的思想,初步形成用代数方法解决几何问题的能力。

高二数学教学计划篇4

新的学期,新的开始。本学期我担任3334班数学课,为了贯彻学校工作计划思想,完成学校的各项教学任务,提高学生的。学校成绩。特将本学期教学工作计划如下:

一、指导思想:

坚持以“学生发展为本,基于学生发展,关注学生发展,为了学生的发展”为教育课程改革的核心理念。不断研究课程标准。在教学中,要突出培养学生的创新和实践能力,收集处理信息的能力、获取新知识的能力、分析解决问题的能力,以及交流协作的能力,发展学生对自然和社会的责任感。从而实现全体学生的发展,以及学生个体的全面发展。为此,教师要发挥自己课程建设中的能动作用,要变“教教材”为“用教材教”,要变“经师”为“人师”,通过创造性地实施新课程,在知识、技能的传授过程中实现学生情感态度价值观的目标,实现育人的功效。

二、合理安排本学期教学进度,扎扎实实完成教学任务:

本学期的教学任务第一学段:数学必修2第四章与必修3。第二学段:文科1-1。本学期我会合理安排教学时间,保证完成教学任务。

三、认真备课工作,保证质量:

本学期坚持进行集体备课,多向有经验老师请教,争取备课做到既备教材又备学生,认真学习新课标,钻研教材,掌握教材知识结构,重点,难点,并与学生原有知识加以联系,做到有的放矢。

四、精选例题和作业:

为提高学生学习的主动性、积极性,培养学生的创新意识。在教学中既要照顾中、下层学生,也要注意培养优生,因此,例题和课外作业的选取一定要有梯度,结合教材,可适度增减例题。课外作业分层要求:A组题要求学生都要完成;B组题要求学生有选择地完成;练习册上的题目经教师精选的必做,其他选做。

五、信息共享,发挥集体智慧的作用:

为加快对试验课的理解和掌握,积极探索教改进程,建立备课组资料库,要积极借助网络信息收集和筛选资料存库,发挥集体智慧,及时应用到具体教学中。

六、认真抓好落实,全面提高:

认真做好学困生的工作,对他们的学习加以督促,对他们的不良习惯加以纠正,争取不让一个学生掉队,大面积提高教学质量,为使提高高二学生的数学成绩而努力奋斗。

高二数学教学计划篇5

一、指导思想:

本 学期,我们高二数学组全体成员将认真贯彻我校的教育教学工作要点,在学校教导处工作计划的指导下,以更新观念为前提,以育人为归宿,以提高课堂教学效率为 重点。转变教学理念,改进教学方法,优化教研模式,积极探索在新课程改革背景下的小学数学教研工作新体系。提高数学教学质量,努力让本组数学教师成为有思 想、有追求、有能力、有经验、有智慧、有作为的新型教师,使备课组的工作更上一个台阶。

二、目标任务:

1、努力提高数学教学质量,使各班数学成绩达到学校规定的有关标准。

2、在数学学科教研教改中注重素质教育,让本组教师成为一支思想素质、业务素质过硬的数学教师队伍。

3、狠抓生本教育,加强数学课堂改革力度,积极开展各项教研活动,提高现代教学水平,切实优化数学课堂教学,充分发挥多媒体教学手段,促进教学质量的提高。

4、积极开展业务学习活动,在全组形成教研之风、互学之风、创新教育之风,共同提高教育教学水平。

5、 加强集体备课。本学期,我们组将按照学校的教学计划如实开展教研活动,认真开展合作研练活动,按照个人研究、同伴交流、达成共识、主备撰写、实践改进、 反思提高的步骤进行集体备课,听课后认真评课,及时反馈,如教学内容安排否恰当。难点是否突破,教法是否得当,教学手段的使用,教学思想、方法的渗透。 是否符合素质教育的要求,老师的教学基本功等方面进行中肯,全面的评论、探讨。争取使我们的教学水平更上一个新的台阶。

三、具体措施:

1、把握教材:

认 真学习新课程标准,钻研教材,把握各单元、各节的教学要求和重难点,熟悉教材的特点和编者的意图,订好所教学科的教学计划。计划要体现每单元重难点以及采 取的措施,研究解决难点的方法。从而改进自己的教学方法和练习策略。对教材中存在的问题及教学中出现的问题要及时进行记录,及时进行反思,认真反思个人的 教育教学心得。

2、规范日常工作:

严格规范数学教学常规。每位教师要认真制定教学计划,认真备课、上课、布置和批改作业、辅导学生、组织数学学科的质量调查。高二上数学教学新计划高二上数学教学新计划。学生作业的规范性要求,包括学生书写作业的规范和教师批阅作业的规范。

3、教师角色的变化:

全组成员要积极实践生本教育,真正实现教师是学习的组织者、引导者,是学生的合作伙伴,不再是在讲的基础上扶着学生、牵着学生去掌握知识,而是要将知识放给学生,放心、放手地让学生自主学习。

总之,我们愿与新课程同行,在探索中前进,在失败中成熟,把新课改引向深入。因为我们坚信我们的新课改最终可以使学生学会:用自己的眼睛去观察,用自己的头脑去思考,用自己的语言去表达,用自己的心灵去感悟。

推荐访问:高二 数学教学 计划 高二数学教学计划上学期最新 高二数学教学计划上学期 高二数学教学计划下学期 高二数学教学计划表 高二数学教学计划和目标 高二数学教学计划措施和目标 高二数学教学计划范文 高二数学教学计划指导思想 高二数学教学计划模板 高二数学教学计划进度表

本文标题:高二数学教学计划5篇【完整版】
链接地址:https://www.jcyl365.com/gongzuojihua/24982.html

版权声明:
1.百资公文网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《高二数学教学计划5篇【完整版】》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。

关于百资公文网 | 在线投稿 | 网站声明 | 联系我们 | 网站帮助 | 投诉与建议 | 人才招聘 |

Copyright © 2000-2024 百资公文网 Inc. All Rights Reserved. 版权所有

本站部分资源和信息来源于互联网,如有侵犯您的权益,请尽快联系我们进行处理,谢谢!备案号:浙ICP备20008635号-1